
Journal of Statistical Physics, VoL 29, No. 4, 1982 

Local Coexistence of Different Phases 
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Under intuitively reasonable assumptions it is shown that in two dimensions 
different phases cannot exist locally. In three dimensions we discuss the possibil- 
ity of local coexistence of districts with different magnetization for the Heisen- 
berg ferromagnet and show that an interaction that breaks rotational invariance 
is necessary for this phenomenon. 

KEY WORDS: Interface; Heisenberg ferromagnet; BIoch wall; KMS- 
condition; relative entropy; surface effect. 

1. INTRODUCTION 

By now there exists quite an extended literature on the existence or 
nonexistence of more than one equilibrium state, especially when these 
states correspond to the spontaneous breaking of an internal symmetry. 
Much less is known about  the local coexistence of phases (where we count 
different extremal equilibrium states obtained by the action of symmetry 
automorphisms as different phases) though this is a phenomenon frequently 
observed in nature. 

We will concentrate on the ferromagnet. Here the stable state of a 
ferromagnet without magnetic field consists of ferromagnetic domains of 
some magnetization and between these domains we find the Bloch walls, in 
which the magnetization gradually switches from one direction into the 
other and whose size is, e.g., for ferrum about  300 lattice points. The 
explanation is given by the interplay of the magnetostatic energy and the 
exchange energy, which consists of a large isotropic part  giving rise to 
ferromagnetism and a small anisotropic part. The magnetostatic energy 
favors the existence of several domains such that the total macroscopic 
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magnetization is zero, whereas the anisotropic energy is necessary to keep 
the interface finite since the switching of the magnetizations runs over 
unfavored directions. (1'2~ 

We want to translate these properties into the language of equilibrium 
states, i.e., states satisfying the K M S  condition. These states describe 
correlations of finite length. Thus we will only obtain states that are not 
invariant under space translations if the Bloch walls are of finite size and 
the observables we consider are located in the Bloch walls and their 
neighborhood. 

We describe our system as the quasilocal C* algebra over the lattice. 
Its time evolution is given by a Hamiltonian consisting of the three parts: 
short-range isotropic energy 

- EJ(x -y),,xOy 
x , y  

magnetostatic energy 

x ~v___~ j i j 1 o~oj 
E ix _ y[5 ~176 - 3 Ix--~f] 3 

the short-range anisotropic energy, which can be chosen to be 

- E M ( x  - y ) o ; o ;  

or for cubic invariance 

i i i i 
- y,.,v)o oyO.Ov 

The heuristic arguments correspond to the following fact: The short-range 
isotropic interaction is able to give rise to extremal invariant states, for 
which rotational symmetry is broken. 

Adding the long-range magnetostatic interactions in three dimensions 
it can give rise to different extremal KMS states but under suitable 
assumptions on clustering properties of these states (which are known to be 
satisfied for translation invariant states) they must be translation invariant 
(i.e., we know that the Bloch walls are infinitely extended but we do not 
know whether the correlations in the Bloch walls are the same as in a 
uniformly magnetized sample). Already for the Ising model the anisotropic 
part is known to produce states that are not translationally invariant. Thus 
it can be taken to be responsible for the finite Bloch walls of the Heisen- 
berg ferromagnet. 

We want to repeat the results and methods used for the study of 
symmetry breaking: With the appropriate assumptions on the short-range 
interaction we know that in one dimension only one equilibrium state can 
exist. In two dimensions a discrete symmetry can be broken (as it happens 
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for the Ising model); for breaking a continuous symmetry (as for the 
Heisenberg magnet without anisotropic part) three dimensions are neces- 
sary. The proofs are either based on the idea of Mermin and Wagner(3): 
they concentrate on the generator of the symmetry and use Bogoliubov's 
inequality (4) ; or the other possibility is to follow an idea of Araki (5) and to 
estimate the relative entropy. This relative entropy S(tollto2) has to be 
infinite if the two states differ globally and thus correspond to different 
representations. If, therefore, we are able to show that the relative entropy 
is bounded from above for two extremal KMS states w~ and to2, these states 
have necessarily to coincide since extremal KMS states are either equal or 
disjoint. 

In Ref. 5 the relative entropy between two KMS states for a system 
with sufficiently decreasing potential was estimated to be of surface size, 
thus bounded in one dimension. In Ref. 6 Fr6hlich and Pfister used the 
idea of the gauge group to estimate the relative entropy over a finite though 
increasing region and obtained by perturbation estimates an optimal re- 
sult (7) for the absence of the breakdown of a continuous symmetry in two 
dimensions. 

We will assume that extremal KMS states that are not translation 
invariant are obtained as limits of Gibbs states with nonuniform boundary 
conditions. The way we choose these boundary conditions is dictated by 
our knowledge of how we can obtain extremal translation-invariant KMS 
states, i.e., we choose two different but for a homogeneous state sufficiently 
strong boundary conditions in the two half-spaces. It seems rather plausible 
to assume that such states should be good candidates to lead to states that 
are not space translation invariant. 

Our results are the following: 
(a) In two dimensions we cannot construct locally coexisting phases. 

(This is in correspondence with the concrete result for the Ising model 
where a partition in two different half-spaces is only possible for dimen- 
sions higher than or equal to three (8-11) .) 

(b) If the two states correspond to the spontaneous breakdown of a 
continuous symmetry then the construction also fails in three dimensions. 

(c) If we take the magnetostatic interaction into account but ignore 
the anisotropic one we observe: Let to o 7~  be two translationally invariant 
extremal KMS states corresponding to the breaking of the gauge symmetry 
7~ of rotation. If for a nonhomogeneous state to r converges to 
o~ o 7~(ox)  as fast a s  1/Ixl  2 then the relative entropy between spatially 
translated states remains finite. Thus ~ should equal both to o y~+ and 
to ~ 7~ , which is impossible. 

We have to remember that our method can only exclude locally 
coexisting phases. What is missing are estimates on the critical temperature. 
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But nevertheless it is satisfying that heuristic arguments based on the 
energy are in agreement with the discussion on the level of the KMS 
condition. 

2. THE RELATIVE ENTROPY 

Unfortunately the definition of relative entropy varies in the literature 
so that it is sometimes positive and sometimes negative definite. We follow 
the definition in Ref. 12. If the two states tom and ~ correspond to the 
density matrices Pl and P2 then 

S({o I Io)2) ~- Tr p2(lnp2 - lnpl ) 

The generalization to states on Von Neumann algebras reads(13): Let tol 
and to 2 be two faithful normal states on a Von Neumann algebra ~q~ with 
modular operators A1 = e - n '  and A 2 = e - n 2 ;  then 

S(r [r = toE(lOg A 2 - logA1) = r 1 - / / 2 )  

W e  will use the following properties of the relative entropy: 
(1) S(tol[O~2)/> 0. 
(2) Let to correspond to the automorphism group ~'t and the GNS 

vector fl, and toe correspond to the perturbed automorphism group ~-f; 
then 

S(toe I to) = log II e H / 2 e - ( " + e ) / 2 ~ l l 2  -- t o ( P )  

S(to I to ~') = - l o g  I[eH/2e-(H+e)/2f~[I 2 + t o e ( p )  

(3) 0 < S(tolto e) + S(toelto) -- ~ e ( p )  _ o~(e) .  

3. ABSENCE OF COEXISTING PHASES IN TWO DIMENSIONS 

We assume that there are already two different KMS states. They may 
belong to a broken discrete symmetry or may differ completely. The Gibbs 
condition tells us (14'15) that these two states can be obtained as limit of local 
equilibrium states (=  Gibbs states) 

Tr exp( - H A - P A,~,2)A 

tol'2(A) = T r e x p ( - H A  - PA,I,Z) VA ~ ~(A) 

where H A is the restriction of the Hamiltonian to the region A and PA 
represents the interaction of the region A with the outside and thus depends 
on the state. For short-range interactions PA is of surface size. But unfortu- 
nately there is not sufficient further information about the structure of this 
PA. Therefore we will assume that if the KMS state is translationally 
invariant, it is obtained as limit of Gibbs states with PA concentrated and 
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homogeneous on the surface, i.e., 

Tr exp( - H A - ~ x E S~xei,2) A 
~1,2(A) = lim 

A ~  T r e x p ( - H  A -  ~x~s'rxP1,2 ) 

where A is the surface of A and ~x space translations and Pi some local 
operator. 

It should be noted that by this method the pure equilibrium states for 
the Ising model are obtained: Here P is chosen to be the interaction term 
with the spin outside o f  the region A fixed. If the pure translationally 
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invariant states o~ 1 and r 2 can be obtained by P1 and P2 the natural 
possibility to construct locally coexisting phases is to consider the limit 

T r e x p ( - H  A - Ex~X+~xP, - E x e x  T~P2)A 
w ( A ) =  lim 

A - ~  T r e x p ( -  H a - •xeX+'rxP1 -- 2 x ~ X  ~'xP2) 

where A+ and A_ are, respectively, the surfaces of A in the right or the left 
half-space. The spatially translated state is obtained in a similar way, only 
the division into right and left half-space is now shifted (Fig. 1). Thus the 
boundary condition differs only in a finite interval and therefore 

S(o~ o "ra [ ~o ) ~< 21allLe~- e211 

and stays bounded in two dimensions. Therefore the limit cannot be space 
dependent. 

4. LOCAL COEXISTING PHASES FOR THE HEISENBERG 
FERROMAGNET 

We concentrate now on the Heisenberg ferromagnet and neglect first 
the anisotropic part  and the long-range part  of the interaction. Therefore 
rotation is a gauge automorphism group 7(a)  

V(a)J(x -y)(Ox'Oy)  = S(x  - y ) ( o x . , , y  ) 

We assume that ~o is an extremal KMS state. Let 

Tr exp( - H A - PA)A 
~0(A) = lim 

A - ~  T r e x p ( -  H A - PA) 

way to obtain the transformed state ~0 o ,f(a) would be to A natural 
consider 

T rexp[  - H a - y(--a)PA]A 
~o y (a) (A)= lim 

A-~o~ T r e x p [ - H a -  7 ( - a ) P A ]  

Unfortunately our knowledge of Pa  is too poor to obtain sufficient esti- 
mates on r a - "y ( - a )PA -- Y ( +  a ) P a ) -  

In  Ref. 6 it was shown how to change the strategy to obtain better 
estimates on the relative entropy. Fr6hlich and Pfister consider a space- 
dependent gauge transformation, namely, 

T r  e x p ( -  Lr a - PA)rA( ) " A 
o~ o "y(a)(A) = lim 

a - ~  Tr e x p ( -  H A - PA) 

where A are cubes of diameter 4L and 

= | 
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with 

Therefore 

with 

a ( x ) = a  for [ x i ] < L  

a ( x )  - L - k a for max(Ix;I ) = L + k 

Tr e x p [ -  H L - WL(a ) ]A 
~ 1 7 6  L-~.lim Trexp[  - HE -- WL(a)]  

w~(,~) = ea~ - ~  r ~ ( . ( x )  - , ~ ( y ) V ( x  - y),.x,.y 
x,y 

Remark .  If one prefers that W L is really a surface term where the 
diameter of the surface is kept fixed as A goes to oo this is possible but the 
arguments to get sufficient estimates on the relative entropy become 
somewhat involved and we believe that the above choice of W L is physi- 
cally satisfying. 

Now we can estimate (6) in two dimensions that 

0 < S ( ~ a o  ~A(a) I~A) + S ( ~ i l ~ a o  y~(a))  

= ,o(w~(~,)  + WL(-- ~') - 2 w~(o ) )  

_ _ 1 , , _  < E E  ~ l s ( x  y)l(x e) 2+ 1 c o ( z )  
x , y ~  Y 

Therefore in two dimensions broken symmetry cannot occur if J decreases 
sufficiently fast. 

We are interested whether in three dimensions different phases can 
exist locally, i.e., if a state exists, that tends to the pure state oa for x 1 ---> - oo 
and to a~ o 7(a)  for x I ---> + m.  Therefore, led by the above choice of W L we 
consider the limit 

~ ( a )  

= lim T r e x p [ -  H a - P A -  E x , , y l > o ' ~ y ( ~  - a ( y ) ) J ( x  - . y ) a x g y ] A  

A-~. Tr[.] 
whereas the translated state is obtained as 

~(,oa) 
= l i m % ( A )  

---- lim Trexp[  - H  A - PA -- Ex, .y ,>aYy(a(x)  - a ( y ) ) J ( x  - y ) a . a y ] A  

~ - .  TrE- ] 
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We estimate as in the two-dimensional case where the relevant sum runs 
over x, y E A, 0 < x] < a, thus the sum over x is again essentially two 
dimensional and therefore we obtain from the previous result 

s(, A,a I A) < c 

therefore the short-range interaction is unable to produce space-dependent 
KMS states. 

We will take now into account the long-range magnetostatic interac- 
tion. Evidently the above estimate fails. But we should remember that the 
argument with the relative entropy is a rather delicate one: Certainly we 
can always change the boundary conditions in such a way that the relative 
entropy grows faster than allowed, but since the relative entropy is not 
continuous but only lower semicontinuous it can still drop to 0 in the limit 
A---> ~ .  On the other hand we must vary the boundary conditions with 
reasonable strength so that at least our physical intuition should tell us that 
this variation should cover the effect that should lead to the new equilib- 
rium state. Our choice of the "surface" term is 

E 
yE~+,x@A0 

+ E [J(x-y)+ :(x-y)]o~[l-yy(a(y)-a(x))oy] 
yE~+,x~+ 

where J is the tensor corresponding to the magnetostatic interaction, A 0 is 
the inside of the considered region, and A+ is the surface of the right 
half-space (Fig. 2). 

We ignore interaction between the right and the left surface. But since 
in any case the new equilibrium state cannot be obtained by a locally 
varying gauge transformation we feel that this transformation should not be 
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taken too seriously, leading to a large contribution of differently oriented 
spins in the interface. 

With this choice of boundary conditions we estimate 

o ral ) 

x~A~a,y~TS+,O< Yl < a 

k x ~ X + , y  ~ ~+ ,0  < y l  < a ) 

We concentrate on the effect of the longrange interaction, thus we have to 
consider terms of the type (i, j fixed) 

(x - y ) , (x  - y)j w[ ~ : -  ~ r ( a (  y))~ 

( x  - Y) (x - Y ) j  , 

i7--7: t 

• + o(  Ix sl' 
if we assume that cluster properties are unchanged with respect to uni- 
formly magnetized states. The last term is sufficiently decreasing, therefore 
after summation over x and y the contribution to the relative entropy stays 
bounded. We concentrate on the first term that decreases as 1 ~Ix - yl 3 and 
is therefore not summable. But we can improve our estimate by considering 
the desired properties of our limit state. 

(A) Let us assume that the two half-spaces correspond to spin up and 
spin down. Then lim~__,+o~oa(ox)=-limx_,_o~oa(% ). If we assume that 
our interface lies really in the middle of the sample (which we should do 
since we are interested in the behavior in the Bloch walls) the conditional 
convergence makes the relative entropy bounded, thus excludes the possi- 
bility of such a state. 

(B) In general different orientations of the spins are possible, thus we 
have to look for a more subtle argument. Now we use some convexity 
properties of the relative entropy and estimate for the longrange effects 

S(~176 dr S(s176 < 2 :(x - y)oD[ox~ly - oxV(~(y)f~y)] 
O<<. y~<a,x~Ao 

O< y l < a , x ~ A o  
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~0 a will be approximately ~o o % for local observables. We assume now that 

~ .)__o~ox~o~_~+O(,x.~,  ~ '~a(Oxay) = ~0(ox).,a(oy) + O( Ix S yl ~ 

Thus the effective range is again 1 / I x - y l  5 and insufficient to produce 
breaking of translation invariance. 

We want to repeat that our estimates depend on uncontrolled assump- 
tions on our states. Nevertheless we feel it is worthwhile to translate 
heuristic arguments on the expectation value of the energy, which essen- 
tially work on the macroscopic level, into arguments on the microscopic 
level of the KMS structure of states. 

5. THE ANISOTROPIC CONTRIBUTION 

The anisotropic contribution breaks rotational symmetry. Thus we 
work with a system that is similar to the Ising model, and here we already 
know that not translationally invariant states are possible in three dimen- 
sions. Thus we can take it to be responsible for the existence of magnetic 
domains with interfaces of finite size. Another problem remains and cannot 
be answered on this level: For the Ising model in three dimensions there is 
some numerical evidence but no proof that the critical temperature corre- 
sponding to locally coexisting phases lies below the critical temperature 
corresponding to spontaneous magnetization. Now the anisotropic contri- 
bution in ferromagnets is rather small and insufficient to produce magne- 
tization at relevant temperatures. Therefore it is still possible that only the 
interplay of long-range interaction and anisotropic interaction can produce 
the coexisting phases. Since our argument does not refer to a special 
temperature it is evidently too weak to give information in this direction. 
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